
PureScript-Simple-JSON
Documentation

Justin Woo

Jun 02, 2023

Contents

1 Pages 3
1.1 Introduction . 3
1.2 Quickstart . 4
1.3 Working with Inferred Record Types . 6
1.4 Usage with Affjax . 9
1.5 Usage with Generics-Rep . 10
1.6 FAQ . 14

i

ii

PureScript-Simple-JSON Documentation

This is a guide for the PureScript library Simple-JSON, which provides an easy way to decode either Foreign
(JS) values or JSON String values with the most “obvious” representation. This guide will also try to guide you
through some of the details of how PureScript the language works, as you may be new to PureScript or not know its
characteristics.

Overall, this library provides you largely automatic ways to get decoding, but does not try to decode any types that
do not actually have a JS representation. This means that this library does not provide you with automatic solutions
for decoding and encoding Sum or Product types, but there is a section below on how to use Generics in PureScript to
achieve the encoding of Sum and Product types that you want.

Tip: If you are coming from Elm, you can think of this library as providing the automatic encoding/decoding of
ports, but actually giving you explicit control of the results and allowing you to define encodings as you need.

Note: If there is a topic you would like more help with that is not in this guide, open a issue in the Github repo for it
to request it.

Contents 1

https://github.com/justinwoo/purescript-simple-json

PureScript-Simple-JSON Documentation

2 Contents

CHAPTER 1

Pages

1.1 Introduction

1.1.1 What is Foreign?

In PureScript, untyped JS values are typed as Foreign and are defined in the Foreign library. Usually when you
define FFI functions, you should define the results of the functions as Foreign and then decode them to a type if you
want to ensure safety in your program.

For example, this library exposes the method parseJSON with the type

parseJSON :: String -> F Foreign

We’ll visit what this F failure type is later, since you won’t need to use it most of the time when you use this library.

1.1.2 How you should use this library

Generally, you should try to separate your transport types from your domain types such that you never try to tie down
the model used in your program to whatever can be represented in JS. For example, a sum type

data IsRegistered
= Registered DateString
| NotRegistered

is the correct model to use in your program, while the transport may be defined

type RegistrationStatus =
{ registrationDate :: Maybe DateString
}

While you could use Maybe DateString all over your application, this type suffers in that there is just not much
information for your users to take from this type. If you used a newtype of this, the actual matching usages would still
suffer the same problem.

3

https://pursuit.purescript.org/packages/purescript-foreign
https://pursuit.purescript.org/packages/purescript-simple-json/4.0.0/docs/Simple.JSON#v:parseJSON

PureScript-Simple-JSON Documentation

1.1.3 On Sum Types

Many users complain that Simple-JSON should provide automatic serialization of sum types, but you’ll find that pre-
ferred encodings for sum types are like opinions – everyone has one. Instead of giving you a default that wouldn’t make
sense in the scope of Simple-JSON as providing decoding for JS-representable types, we’ll go over how PureScript’s
Generics-Rep work and how easy it is for you to work with sum types with your preferred methods.

1.2 Quickstart

1.2.1 Decoding / Reading JSON

Simple-JSON can be used to easily decode from types that have JSON representations, such as numbers, booleans,
strings, arrays, and records.

Let’s look at an example using a record alias:

type MyRecordAlias =
{ apple :: String
, banana :: Array Int
}

Now we can try decoding some JSON:

import Simple.JSON as JSON

testJSON1 :: String
testJSON1 = """
{ "apple": "Hello"
, "banana": [1, 2, 3]
}
"""

main = do
case JSON.readJSON testJSON1 of
Right (r :: MyRecordAlias) -> do

assertEqual { expected: r.apple, actual: "Hello"}
assertEqual { expected: r.banana, actual: [1, 2, 3] }

Left e -> do
assertEqual { expected: "failed", actual: show e }

Since JSON.readJSON returns Either MultipleErrors a, we need to provide the compiler information on
what type the a should be. We accomplish this by establishing a concrete type for a with the type annotation r ::
MyRecordAlias, so the return type is now Either MultipleErrors MyRecordAlias, which is the same
as Either MultipleErrors { apple :: String, banana :: Array Int }.

And that’s it!

1.2.2 Encoding / Writing JSON

Encoding JSON is a failure-proof operation, since we know what we want to encode at compile time.

main = do
let
myValue =

(continues on next page)

4 Chapter 1. Pages

PureScript-Simple-JSON Documentation

(continued from previous page)

{ apple: "Hi"
, banana: [1, 2, 3]
} :: MyRecordAlias

log (JSON.writeJSON myValue) -- {"banana":[1,2,3],"apple":"Hi"}

And that’s all we need to do to encode JSON!

1.2.3 Working with Optional values

For most cases, the instance for Maybe will do what you want by decoding undefined and null to Nothing and
writing undefined from Nothing (meaning that the JSON output will not contain the field).

type WithMaybe =
{ cherry :: Maybe Boolean
}

testJSON3 :: String
testJSON3 = """
{ "cherry": true
}
"""

testJSON4 :: String
testJSON4 = """
{}
"""

main = do
case JSON.readJSON testJSON3 of
Right (r :: WithMaybe) -> do

assertEqual { expected: Just true, actual: r.cherry }
Left e -> do
assertEqual { expected: "failed", actual: show e }

case JSON.readJSON testJSON4 of
Right (r :: WithMaybe) -> do

assertEqual { expected: Nothing, actual: r.cherry }
Left e -> do
assertEqual { expected: "failed", actual: show e }

let
withJust =
{ cherry: Just true
} :: WithMaybe

withNothing =
{ cherry: Nothing
} :: WithMaybe

log (JSON.writeJSON withJust) -- {"cherry":true}
log (JSON.writeJSON withNothing) -- {}

If you explicitly need null and not undefined, use the Nullable type.

1.2. Quickstart 5

PureScript-Simple-JSON Documentation

main =
case JSON.readJSON testJSON3 of
Right (r :: WithNullable) -> do
assertEqual { expected: toNullable (Just true), actual: r.cherry }

Left e -> do
assertEqual { expected: "failed", actual: show e }

case JSON.readJSON testJSON4 of
Right (r :: WithNullable) -> do
assertEqual { expected: "failed", actual: show r }

Left e -> do
let errors = Array.fromFoldable e
assertEqual { expected: [ErrorAtProperty "cherry" (TypeMismatch "Nullable

→˓Boolean" "Undefined")], actual: errors }

let
withNullable =

{ cherry: toNullable Nothing
} :: WithNullable

log (JSON.writeJSON withNullable) -- {"cherry":null}

1.3 Working with Inferred Record Types

1.3.1 How records work in PureScript

In PureScript, a Record type is parameterized by # Type

data Record :: # Type -> Type

As seen on Pursuit, this means that records are an application of row types of Type, such that the two definitions are
equivalent:

type Person = { name :: String, age :: Number }

type Person = Record (name :: String, age :: Number)

With this knowledge, we can work with records in a generic way where any operation with the correct row type
constraints is valid.

This is unlike other languages where records are often simply product types with selector information. Let’s look at
some examples of this at work.

1.3.2 Modifying a field’s type

Say that we wanted to read in JSON into this type:

type RecordWithEither =
{ apple :: Int
, banana :: Either Int String
}

We know that there’s no representation of this Either Int String in JavaScript, but it would be convenient to
read some value into it. First, let’s define a function to read in any Either:

6 Chapter 1. Pages

https://pursuit.purescript.org/builtins/docs/Prim#t:Record

PureScript-Simple-JSON Documentation

readEitherImpl
:: forall a b
. JSON.ReadForeign a
=> JSON.ReadForeign b
=> Foreign
-> Foreign.F (Either a b)

readEitherImpl f
= Left <$> JSON.readImpl f

<|> Right <$> JSON.readImpl f

Now we can read in to an Either any a and b that have instances for ReadForeign. We can then use this to
modify a field in an inferred context:

readRecordWithEitherJSON :: String -> Either Foreign.MultipleErrors RecordWithEither
readRecordWithEitherJSON s = runExcept do
inter <- JSON.readJSON' s
banana <- readEitherImpl inter.banana
pure $ inter { banana = banana }

So what goes on here is that since the result of the function is our RecordWithEither with a field of banana
:: Either Int String, the type is inferred “going backwards”, so with the application of our function that is
now concretely typed in this context as readEitherImpl :: Foreign -> Foreign.F (Either Int
String), the inter is read in as { apple :: Int, banana :: Foreign }.

In this case, we used record update syntax to modify our inferred record, but we also could have done this generically
using Record.modify from the Record library.

1.3.3 PureScript-Record in a nutshell

Most of PureScript-Record revolves around usages of two row type classes from Prim.Row:

class Cons
(label :: Symbol) (a :: Type) (tail :: # Type) (row :: # Type)
| label a tail -> row, label row -> a tail

class Lacks
(label :: Symbol) (row :: # Type)

class Cons is a relation of a field of a given Symbol label (think type-level String), its value Type, a row type
tail, and a row type row which is made of the tail and the field put together. This is very much like your normal
List of Cons a and Nil, but with the unordered row type structure at the type level (that (a :: String, b
:: Int) is equivalent to (b :: Int, a :: String)).

class Lacks is a relation of a given Symbol label not existing in any of the fields of row.

With this bit of knowledge, we can go ahead and look at the docs of the Record library.

Let’s go through a few of these. First, get:

get
:: forall r r' l a
. IsSymbol l
=> Cons l a r' r
=> SProxy l
-> { | r }
-> a

1.3. Working with Inferred Record Types 7

https://pursuit.purescript.org/packages/purescript-record
https://justinwoo.github.io/generated-docs-12/generated-docs/Prim.Row.html
https://pursuit.purescript.org/packages/purescript-record

PureScript-Simple-JSON Documentation

So here right away we can see that the Cons constraint is used to declare that the label l provided by the SProxy
argument must exist in the row type r, and that there exists a r', a complementary row type, which is r but without
the field l, a. With this, this function is able to get out the value of type a at label l. This function doesn’t know
what concrete label is going to be used, but it uses this constraint to ensure that the field exists in the record.

insert
:: forall r1 r2 l a
. IsSymbol l
=> Lacks l r1
=> Cons l a r1 r2
=> SProxy l
-> a
-> { | r1 }
-> { | r2 }

With insert, we work with the input row type r1 and the output row type r2. The constraints here work that the
r1 row should not contain a field with label l, and that the result of adding a field of l, a to r1 yields r2.

Now, the most involved example:

rename
:: forall prev next ty input inter output
. IsSymbol prev
=> IsSymbol next
=> Cons prev ty inter input
=> Lacks prev inter
=> Cons next ty inter output
=> Lacks next inter
=> SProxy prev
-> SProxy next
-> { | input }
-> { | output }

Because PureScript does not solve multiple constraints simultaneously, we work with three row types here: input,
inter (intermediate), and output. This function takes two Symbol types: one for the current label of the field and
one for the next label. Then the constraints work such that inter is input without the field prev, ty and lacks
any additional fields of prev, as row types can have duplicate labels as they are not only for records. Then output
is constructured by adding the field next, ty to inter and checking that the inter does not already contain a
field with the label next. While this seems complicated at first, slowly reading through the constraints will show that
this is a series of piecewise operations instead of being a multiple-constraint system.

1.3.4 Application of generic Record functions

Say we have a type where we know the JSON will have the wrong name:

type RecordMisnamedField =
{ cherry :: Int
}

If the JSON we receive has this field but with the name “grape”, what should we do?

We can apply the same inferred record type method as above but with Record.rename:

readRecordMisnamedField :: String -> Either Foreign.MultipleErrors RecordMisnamedField
readRecordMisnamedField s = do
inter <- JSON.readJSON s

(continues on next page)

8 Chapter 1. Pages

PureScript-Simple-JSON Documentation

(continued from previous page)

pure $ Record.rename grapeP cherryP inter
where
grapeP = SProxy :: SProxy "grape"
cherryP = SProxy :: SProxy "cherry"

So again, by applying a function that renames grape, Int to cherry, Int, the inferred record type of the
inter is { grape :: Int } and that is the type used to decode the JSON.

Hopefully this page has shown you how powerful row type based Records are in PureScript and the generic operations
they allow.

You might be interested in reading through slides for further illustrations of how generic record operations work and
how they can be used with Simple-JSON.

1.4 Usage with Affjax

There is an issue that discusses how usage with Affjax goes here: https://github.com/justinwoo/purescript-simple-json/
issues/51

1.4.1 Manually

In short, you can use the string response format for the request:

import Prelude
import Affjax (get, printError)
import Affjax.ResponseFormat (string)
import Data.Either (Either(..))
import Effect (Effect)
import Effect.Aff (launchAff_)
import Effect.Class.Console (log)
import Simple.JSON (readJSON)

type MyRecordAlias
= { userId :: Int }

main :: Effect Unit
main =

launchAff_
$ do

res <- get string "https://jsonplaceholder.typicode.com/todos/1"
case res of
Left err -> do

log $ "GET /api response failed to decode: " <> printError err
Right response -> do

case readJSON response.body of
Right (r :: MyRecordAlias) -> do
log $ "userID is: " <> show r.userId

Left e -> do
log $ "Can't parse JSON. " <> show e

1.4. Usage with Affjax 9

https://speakerdeck.com/justinwoo/easy-json-deserialization-with-simple-json-and-record
https://github.com/justinwoo/purescript-simple-json/issues/51
https://github.com/justinwoo/purescript-simple-json/issues/51

PureScript-Simple-JSON Documentation

1.4.2 With Simple-Ajax

You can use Dario’s library for making requests with Affjax and handling errors with Variant here: https://github.com/
dariooddenino/purescript-simple-ajax

1.5 Usage with Generics-Rep

1.5.1 Motivation

If you really want to work with sum types using Simple-JSON, you will have to define instances for your types
accordingly. Normally, this would mean that you would have to define a bunch of instances manually. For example,

data IntOrBoolean
= Int Int
| Boolean Boolean

instance readForeign :: JSON.ReadForeign IntOrBoolean where
readImpl f

= Int <$> Foreign.readInt f
<|> Boolean <$> Foreign.readBoolean f

But this ends up with us needing to maintain a mountain of error-prone boilerplate, where we might forget to include
a constructor or accidentally have duplicate cases. We should be able to work more generically to write how instances
should be created once, and then have all of these instances created for us for free.

This is the idea of using datatype generics, which are provided by the Generics-Rep library in PureScript.

1.5.2 Generics-Rep in short

Since what makes Generics-Rep work is in the PureScript compiler as a built-in derivation, you can read through its
source to get the gist of it: Link

So once you’ve skimmed through that, let’s first look at class Generic:

class Generic a rep | a -> rep where
to :: rep -> a
from :: a -> rep

The functional dependencies here declare that instances of Generic are determined by the type given, so only a
needs to be known to get rep. Then we have a method for turning the representation into our type with to and
our type into a representation with from. This means that if we define a function that can produce a F rep from
decoding Foreign in our JSON.ReadForeign instances, we can map the to function to it to get F a. We’ll see
how that works later.

If some of this isn’t familiar to you, you should read about type classes from some source like PureScript By Example

Then, let’s look at some of the most relevant representation types:

-- | A representation for types with multiple constructors.
data Sum a b = Inl a | Inr b

-- | A representation for constructors which includes the data constructor name
-- | as a type-level string.
newtype Constructor (name :: Symbol) a = Constructor a

(continues on next page)

10 Chapter 1. Pages

https://github.com/dariooddenino/purescript-simple-ajax
https://github.com/dariooddenino/purescript-simple-ajax
https://pursuit.purescript.org/packages/purescript-generics-rep
https://github.com/purescript/purescript-generics-rep/blob/49ba119b315ff782293e6f59625d6b5e87099812/src/Data/Generic/Rep.purs
https://leanpub.com/purescript/read#leanpub-auto-type-classes

PureScript-Simple-JSON Documentation

(continued from previous page)

-- | A representation for an argument in a data constructor.
newtype Argument a = Argument a

These will be the main types that will need to write instances for when we define a type class to do some generic
decoding. These correspond to the following parts of a definition:

data Things = Apple Int | Banana String
-- a Sum b
-- e.g. Sum (Inl a) (Inr b)

data Things = Apple Int | Banana String
-- Constructor(name) a
-- e.g. Constructor "Apple" a

data Things = Apple Int | Banana String
-- Argument(a)
-- e.g. Argument Int

This diagram probably won’t be that useful the first time you read it, but you may find it to be nice to return to.

You can read more coherent explanations like in the documentation for GHC Generics in generics-deriving

1.5.3 Applying Generics-Rep to decoding untagged JSON values

Let’s revisit the IntOrBoolean example, but this time by using Generics-Rep.

import Data.Generic.Rep as GR
import Data.Generic.Rep.Show (genericShow)

data IntOrBoolean2
= Int2 Int
| Boolean2 Boolean

-- note the underscore at the end for the `rep` parameter of class Generic
derive instance genericIntOrBoolean2 :: GR.Generic IntOrBoolean2 _

instance showIntOrBoolean2 :: Show IntOrBoolean2 where
show = genericShow
-- now we get a Show based on Generic

instance readForeignIntOrBoolean2 :: JSON.ReadForeign IntOrBoolean2 where
readImpl f = GR.to <$> untaggedSumRep f
-- as noted above, mapping to so that we go from F rep to F IntOrBoolean

class UntaggedSumRep rep where
untaggedSumRep :: Foreign -> Foreign.F rep

So with our class UntaggedSumRep, we have our method untaggedSumRep for decoding Foreign to rep.

Once we have this code, we’ll get some errors about missing instances for Sum, Constructor, and Argument as
expected.

First, we define our Sum instance so we take the alternative of a Inl construction and Inr construction:

1.5. Usage with Generics-Rep 11

http://hackage.haskell.org/package/generic-deriving-1.12.1/docs/Generics-Deriving-Base.html

PureScript-Simple-JSON Documentation

instance untaggedSumRepSum ::
(UntaggedSumRep a
, UntaggedSumRep b
) => UntaggedSumRep (GR.Sum a b) where
untaggedSumRep f

= GR.Inl <$> untaggedSumRep f
<|> GR.Inr <$> untaggedSumRep f

And in our instance we have clearly constrained a and b for having instances of UntaggedSumRep, so that we can
use untaggedSumRep on the members.

Then we define our Constructor instance:

instance untaggedSumRepConstructor ::
(UntaggedSumRep a
) => UntaggedSumRep (GR.Constructor name a) where
untaggedSumRep f = GR.Constructor <$> untaggedSumRep f

This definition similar to above, but just with our single constructor case.

This is where you would try reading f into a record by doing something like record :: { tag :: String,
value :: Foreign } <- f in a do block, if you wanted to represent sum types in that way. Sky’s the limit!

Then let’s define the argument instance that will call readImpl on the Foreign value.

instance untaggedSumRepArgument ::
(JSON.ReadForeign a
) => UntaggedSumRep (GR.Argument a) where
untaggedSumRep f = GR.Argument <$> JSON.readImpl f

And so at this level, we try to decode the Foreign value directly to the type of the argument.

With just these few lines of code, we now have generic decoding for our untagged sum type encoding that we can
apply to any sum type where Generic is derived and the generic representation contains Sum, Constructor, and
Argument. To get started with your own instances, check out the example in test/Generic.purs in the Simple-JSON
repo.

1.5.4 Working with “Enum” sum types

If you have sum types where all of the constructors are nullary, you may want to work with them as string literals. For
example:

data Fruit
= Abogado
| Boat
| Candy

derive instance genericFruit :: Generic Fruit _

Like the above, we should write a function that can work with the generic representation of sum types, so that we can
apply this to all enum-like sum types that derive Generic and use it like so:

instance fruitReadForeign :: JSON.ReadForeign Fruit where
readImpl = enumReadForeign

enumReadForeign :: forall a rep
. Generic a rep
=> EnumReadForeign rep

(continues on next page)

12 Chapter 1. Pages

https://github.com/justinwoo/purescript-simple-json/blob/master/test/Generic.purs

PureScript-Simple-JSON Documentation

(continued from previous page)

=> Foreign
-> Foreign.F a

enumReadForeign f =
to <$> enumReadForeignImpl f

First, we define our class which is take the rep and return a Foreign.F rep:

class EnumReadForeign rep where
enumReadForeignImpl :: Foreign -> Foreign.F rep

Then we only need two instance for this class. First, the instance for the Sum type to split cases:

instance sumEnumReadForeign ::
(EnumReadForeign a
, EnumReadForeign b
) => EnumReadForeign (Sum a b) where
enumReadForeignImpl f

= Inl <$> enumReadForeignImpl f
<|> Inr <$> enumReadForeignImpl f

Then we need to match on Constructor, but only when its second argument is NoArguments, as we want only
to work with enum sum types.

instance constructorEnumReadForeign ::
(IsSymbol name
) => EnumReadForeign (Constructor name NoArguments) where
enumReadForeignImpl f = do
s <- JSON.readImpl f
if s == name

then pure $ Constructor NoArguments
else throwError <<< pure <<< Foreign.ForeignError $

"Enum string " <> s <> " did not match expected string " <> name
where

name = reflectSymbol (SProxy :: SProxy name)

We put a IsSymbol constraint on name so that can reflect it to a string and check if it is equal to the string that is
taken from the foreign value. In the success branch, we construct the Constructor value with the NoArguments
value.

With just this, we can now decode all enum-like sums:

readFruit :: String -> Either Foreign.MultipleErrors Fruit
readFruit = JSON.readJSON

main = do
logShow $ readFruit "\"Abogado\""
logShow $ readFruit "\"Boat\""
logShow $ readFruit "\"Candy\""

1.5. Usage with Generics-Rep 13

PureScript-Simple-JSON Documentation

1.6 FAQ

1.6.1 How do I get instances of ReadForeign/WriteForeign for my newtypes?

See the post about PureScript newtype deriving here: https://github.com/paf31/24-days-of-purescript-
2016/blob/master/4.markdown

So you can do everything given some definition of a newtype and its instances:

-- from test/Quickstart.purs

newtype FancyInt = FancyInt Int

derive newtype instance eqFancyInt :: Eq FancyInt
derive newtype instance showFancyInt :: Show FancyInt
derive newtype instance readForeignFancyInt :: JSON.ReadForeign FancyInt
derive newtype instance writeForeignFancyInt :: JSON.WriteForeign FancyInt

1.6.2 Why isn’t this library Aeson-compatible?

There are a few factors involved here:

1. I (Justin) don’t use Aeson instances.

2. Many Aeson instances revolve around using Sum and Product types (or Haskell Records, which are not struc-
turally similar to PureScript Records).

3. I would rather give you the tools to write your own so that you have instances that match what you are using by
having docs/guides like in this page: https://purescript-simple-json.readthedocs.io/en/latest/generics-rep.html

4. There doesn’t seem to be anyone else making a general solution library and publishing it.

1.6.3 I just want some random encoding for my Sum types!

If you really are sure you don’t want to use the existing instances for Variant (from purescript-variant), you can use
the code from here: https://github.com/justinwoo/purescript-simple-json-generics

You might also choose to use this library: https://github.com/justinwoo/purescript-kishimen

1.6.4 How do I handle keys that aren’t lower case?

PureScript record labels can be quoted.

type MyRecord =
{ "Apple" :: String }

fn :: MyRecord -> String
fn myRecordValue =

myRecordValue."Apple"

14 Chapter 1. Pages

https://github.com/paf31/24-days-of-purescript-2016/blob/master/4
https://github.com/paf31/24-days-of-purescript-2016/blob/master/4
https://purescript-simple-json.readthedocs.io/en/latest/generics-rep.html
https://pursuit.purescript.org/packages/purescript-variant/5.0.0/docs/Data.Variant#t:Variant
https://github.com/natefaubion/purescript-variant
https://github.com/justinwoo/purescript-simple-json-generics
https://github.com/justinwoo/purescript-kishimen

	Pages
	Introduction
	Quickstart
	Working with Inferred Record Types
	Usage with Affjax
	Usage with Generics-Rep
	FAQ

